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• Satellite measurements: NO2 tropospheric columns V  
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… and beyond: 

• Downwind plume evolution contains lifetime 
information! 

• Derive E independent from models 

  

 

 

 



Estimates of NOx lifetimes from satellite 

• Leue et al., JGR, 2002: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

•  t~1 d 

• Biased high! (GOME-resolution!) 



Estimates of NOx lifetimes from satellite 

• Beirle et al., GRL, 2004: 

 

 

 

 

 

 

 

 

 

•  t~5 h 

• Specific conditions:  
strong & stable seasonal winds 



Riyadh is particularly suited: 

• Strong, isolated source 

• Homogeneous terrain & wind fields (no coast!) 

• No clouds! 

Mean tropospheric 

NO2 TVCD 2005-2009   

(DOMINO v1.02, 

cloud-free (TEMIS) 

For calm (<2m/s) and 

different wind 

directions (ECMWF) 

Estimates of NOx lifetimes from satellite 

• Beirle et al., Science, 2011: 
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Estimates of NOx lifetimes from satellite 

L(x)=Vdy 

2D TVCD V(x,y)               1D “Line density“ (LD) L(x)  

Fit: Truncated exp convolved with Gaussian 

Gaussian accounts for  

- spatial source extension 

- dilution in wind direction 

- changing wind speeds 

- satellite ground pixel size 



Estimates of NOx lifetimes from satellite 

L(x)=Vdy 
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Source position may be fitted as well 



Estimates of NOx lifetimes from satellite 

L(x)=Vdy 

2D TVCD V(x,y)               1D “Line density“ (LD) L(x)  
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Estimates of NOx lifetimes from satellite 

L(x)=Vdy 

2D TVCD V(x,y)               1D “Line density“ (LD) L(x)  

Time constant: t=x0/w 

ENOx=1.3E 

Fit: Truncated exp convolved with Gaussian plus background 
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NOx lifetimes and emissions 

• Downwind decay can be well described by a single e-
folding distance  effective lifetime teff - 
despite nonlinearities: 

– Chemistry: OH/NOx chemistry: NOx lifetime depends on NOx conc. 

– Mathematics: <exp(-t/ti)> ≠ exp(-t/<ti>) 

– Smoothing effects! 

•  teff relates emissions to columns! 

• Riyadh:  

 teff =4±0.4 h 

 ENOx=246 mol/s 



• Applicable to strong “point sources“ with low background 

• E generally in  
agreement with 
EDGAR  
(except Riyadh!) 

NOx lifetimes and emissions 

EDGAR version 4.1. http://edgar.jrc.ec.europa.eu/ 
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NOx lifetimes and emissions 

EDGAR version 4.1. http://edgar.jrc.ec.europa.eu/ 

Riyadh (~7M people)  
is highly polluted!  
High ozone levels! 
Should be kept in  
mind, even if <10M! 
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NOx lifetimes and emissions 
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New study: Valin et al., GRL, 2013 

• Focus on Riyadh 

• Downwind decay for different wind speeds separately 

• Results: 

–  t depends on wind speed 

–  t    = 6.7 h    4.0 h  

– ENOx = 135 mol/s   246 mol/s  

Valin et al., 2013 
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t  =      5.5  4.5 h  -18% 

ENOx  = 135  188 mol/s  39% 

 

E is biased low: 

- Integrated column to 300 km  
(instead of infinity):    8-12% 

- Negative Background    7-13% 

Valin et al. vs. Beirle et al. vs. Beirle reprocessing 
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Valin et al. vs. Beirle et al. vs. Beirle reprocessing 

Valin et al., 2013 

1.5 kmol/km * 400 km 

=600 kmol 

E B t 



Valin et al. vs. Beirle et al. vs. Beirle reprocessing 



Valin et al. vs. Beirle et al. vs. Beirle reprocessing 

 t biased high 

-  E biased low 

- No dependency on wind speed !? 



Nonlinearities: Downwind change of t!? 

• Simple model: Emissions, transport, dilution, chemistry 
according to OH=f(NOx) 

• Lifetime is  

– High at the source  

– Low at ~ 100-200 km 

– High beyond 
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convex or concave? 



Nonlinearities: Downwind change of t!? 

• Do we see this effect? Not in Beirle et al., 2011! But...  
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Nonlinearities: Downwind change of t!? 

• Do we see this effect? Not in Beirle et al., 2011! But...  

For strong winds?    In the shiptracks!? 

 

 

 

 

 

 

 

 

 

• OH is not everything 

• Needs further investigation... 

Valin et al., 2013 



Conclusions I: Current status 

• Satellite measurements provide information about 
emissions and chemistry 

• Downwind decay can be described by single 
effective daytime NOx lifetime: ~4h –  
despite nonlinearities! 

• Smoothing effects (source distribution, satellite 
pixel size, dilution) and Background have to be 
considered 

• Is there a systematic in-plume variation? 

– High wind speeds!? 

– Ship tracks!? 

– Needs further investigation 

 



Conclusions II: Outlook 

• Crucial a-priori: (relative) NO2 profile: 

– AMF 

– Wind fields 

 Profile measurements! 

• LEO: 

– Analysis of long-term means 

 Ongoing timeseries with good spatial coverage! 

• Smoothing: 

 Better spatial resolution! 

• GEO: 

– Diurnal cycles!? 

– Temporal plume evolution 

 



Additional Slides 

N Equator 

Light colours: 

3 or less wind  

direction sectors 
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Impact of diurnal cycles. Dependency of fitted lifetime (left) and emissions (right) on 

the a-priori night-time lifetime and emissions for the synthetic line density model run. 

A-priori daytime lifetime/emissions was set to 5 hours/1 AU (dotted lines).  



Additional slides 

Impact of interfering sources on fitted lifetimes (in hours, blue) and emissions (in 
AU, red), for additional emissions of 10%, 30%, or 50% at 200 km or 100 km distance. 
For 50% additional emissions at -100 km, the fit performance was deficient. 

 

-200 
km 

+200 
km 

Mean 200 
km 

-100 
km 

+100 
km 

Mean 100 
km 

10% 
4.0±0.2 5.4±1.0 4.7 3.9±0.5 5.9±0.3 4.9 

1.0±0.0 0.9±0.1 1.0 1.1±0.1 0.9±0.0 1.0 

30% 
3.0±0.9 7.8±3.6 5.4 2.5±1.6 8.3±1.6 5.4 

1.1±0.3 0.7±0.2 0.9 1.6±0.8 0.8±0.1 1.2 

50% 
2.3±1.9 13.3±10.7 7.8 - 10.3±3.9 - 

1.3±0.9 0.6±0.3 0.9 - 0.8±0.2 - 



Additional slides 

Dependency of fit results for  t (blue) and E (red) on the integration interval b for 

NO2 observations (mean of the fit results from all wind direction sectors) over 

Riyadh.  



Other Point sources 
 

• Definition of point sources via contrast and 
background homogeneity: 
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Other Point sources 

• 15 locations worldwide 

• 9 locations with successful fit: 
– Mean wind speed > 2 m/s (skips Mexico City) 

– Method works for at least 2 wind direction sectors in each season 



Uncertainties 

     t  E 

• NO2 VCDs     30% 

• NO2/NOx      10% 

• Choice of fit interval  10%  10% 

• Choice of wind fields  30%  30%  

• Fit confidence interval 10-50% 10-50% 

• Fit SME     10-40% 10-40% 

  

• Total (if independent) ~35-60% ~47-63% 

 

• Uncertainties are lowest for Riyadh 



MEGAPOLI: What about Paris? 

Paris, autumn 



MEGAPOLI: What about Paris? 

Solution:  

• Consider smaller area 

• Allow for (linearly) varying background 

• Fit opposite wind direction sectors simultaneously  

Paris, autumn 



MEGAPOLI: What about Paris? 

Results:  

• t=4.11.5 h 

• E=9847 mol/s  
 

EDGAR: 118 mol/s 
(150150 km2)  
 

MAXDOAS:  

~53 mol/s (summer) 

~117 mol/s (winter) 
(Reza Shaiganfar, personal communication) 
 

MP: ~ 86 mol/s 

CITEPA: ~ 104 mol/s 
(Hugo van der Gon, personal communication) 



Conclusions (I) 

• Riyadh (~7M people) is highly polluted!  

• High ozone levels 

• The large cities in the Middle East should be considered as 
Megacities, even if <10M! 


