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[1] Nitrogen oxides play a key role in tropospheric chemistry; to study the distribution
patterns of the corresponding anthropogenic emissions (fossil, industrial, waste), we
use three independent data sources: GOME measurements of the tropospheric NO2 column
density fields, the EDGAR 3 emission inventory as an estimation of the anthropogenic
NOx emissions and nighttime images of worldwide human settlements seen by the DMSP
OLS satellite instrument as a proxy for these emission patterns. The uncertainties are
not known precisely for any of the fields. Using the MOZART-2 CTM, tropospheric
column density fields are calculated from the emission estimates, and transformations are
developed to turn the GOME columns into anthropogenic emission fields. Assuming
the errors of the three data sources (GOME, EDGAR, lights) to be independent, we are
able to determine ranges for the pattern errors of the column density fields and values for
the pattern errors of the source fields by a correlation analysis that connects relative
error (co)variances and correlation coefficients. That method was developed for this
investigation but can generally be used to calculate relative error variances of data sets, if
the errors of at least three of them can be assumed to be independent. We estimate the
pattern error of the EDGAR 3 anthropogenic NOx emission field as (27 ± 5)%, which can
be reduced by combining all fields to (15 ± 3)%. By determining outliers, we identify
locations with high uncertainty that need further examination.
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1. Introduction

[2] For a long time, the global distribution of nitrogen
oxides (NOx = NO + NO2) could only be analyzed by
model calculations, using global chemistry transport models
(CTMs), because ground-based or air-borne measurement
campaigns were necessarily temporally and spatially
limited. As another approach, now satellite instruments
can measure atmospheric trace gas concentrations with
global coverage and fixed spatial and temporal resolution
over a long period of time. Since its launch in April 1995,
the satellite instrument GOME has been measuring spectra
in the UV and visible range that allow the retrieval of a
range of trace gases including NO2. Satellite measurements
and model calculations can easily be compared, as in both
cases mean values over a certain area are determined: The
satellite instrument measures the absorption along the
complete light path and model outputs are mean values of
the grid boxes given by the resolution of the model, whereas

for in situ measurements it is difficult to decide whether
point measurements are representative for the corresponding
grid box of a global model. Unfortunately, both, model
calculations and satellite measurements may contain large
uncertainties which are difficult to estimate. Model errors
include emissions, transport and chemistry, and models are
not evaluated globally but only by comparison with mea-
surement campaigns or single stations. For the retrieval of
tropospheric trace gas concentrations from satellite spectra,
assumptions of local parameters such as cloud coverage,
surface albedo, and vertical profile of the retrieved trace gas
are necessary, which are often gained by modeling.
[3] In this analysis, we use GOME retrievals independent

of model calculations, the EDGAR 3 database that estimates
anthropogenic emissions based on economic and population
density data of the different countries, and the MOZART-2
global CTM. As an independent data source, we use
nighttime images of human settlements in the visible range
of the satellite instrument DMSP-OLS (defense meteoro-
logical satellite program, optical linescan system) as a proxy
for the pattern of the anthropogenic emissions. The aims of
this analysis are the quantification of pattern errors of the
EDGAR 3 anthropogenic NOx emissions (excluding bio-
mass burning and agriculture) and the GOME measure-
ments in the area dominated by anthropogenic emissions,
the construction of an optimized emission field, and the
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identification of outliers in the data sets to indicate areas
where the disagreements between the fields and therefore
the uncertainties are highest. The assumptions made in this
paper to achieve these aims are purely statistical and
different from the assumptions made in the GOME retriev-
als and models.

2. NO2 Columns

[4] In this section, NO2 column density fields are de-
scribed and a correlation analysis connecting spatial corre-
lation coefficients and relative error variances is carried out.

2.1. GOME Measurements

[5] The GOME (Global Ozone Monitoring Experiment)
instrument [Burrows et al., 1995] is situated onboard the
second European remote sensing satellite ERS-2, which was
launched April, 21st 1995. The satellite passes the equator
in a sun-synchronous polar orbit at 10:30 local time and
reaches global coverage at the equator after three days. The
instrument itself consists of four spectrometers with 1024
channels each in the UV and visible range. It operates in
nadir geometry, which means it is looking straight down to
the earth measuring the sunlight scattered back from the
earth and from the air column above.
2.1.1. Retrieval
[6] One of the data products retrieved from the GOME

measurements are tropospheric NO2 column densities.
Retrievals have been carried out by Wenig [2001], Leue et
al. [2001], Richter and Burrows [2002], Martin et al. [2002,
2003], Nüß [2005], Boersma et al. [2004], and Beirle et al.
[2004]. The main steps from absorption spectra to tropo-
spheric column densities are: Calculation of the so called
slant column densities, separation of the stratospheric and
the tropospheric part of the columns, and conversion of the
slant columns into vertical columns. They are described in
detail in the publications cited above. The slant column
densities are calculated using the DOAS method [Platt et
al., 1979] using Lambert–Beer’s law, and give the integral
of the NO2 along the lightpath from the sun through the
atmosphere of the earth scattered back to GOME. In
particular in the presence of clouds or aerosols, multiple
scattering also plays a role. The stratospheric part of the
NO2 can be estimated using the reference sector method
(RSM), an image processing algorithm (IPA) or calculated
by a model of the stratosphere. For the RSM, the strato-
spheric NO2 is assumed to have only a weak longitudinal
dependency. At each latitude, the columns in an area remote
of the known sources are assumed to be of stratospheric
origin and subtracted from the total columns. In the IPA it is
assumed that the columns over the oceans over cloudy
pixels are of stratospheric origin. The pattern of these pixels
is extrapolated over the continents. To convert slant column
densities into vertical column densities the so called air
mass factor (AMF), the ratio of the two quantities, is
applied. The AMF depends on the observing geometry
(scanning angle and solar zenith angle), but also on the
vertical profile of the absorbing trace gas, surface albedo,
cloud coverage, cloud height, and aerosol loading. It is
usually calculated by a radiative transfer model. Parameters
as vertical profile and aerosols are often calculated by a
chemical transport model (CTM) of the troposphere.

2.1.2. GOME Leue and GOME Richter
[7] For the analysis carried out in this paper it is essential

that the errors of the fields examined can be assumed to be
independent. Since we will also examine model calcula-
tions from the global CTM MOZART-2 (see below), we
used only GOME retrievals that were done without use of
a CTM to calculate the vertical profile of NO2 for the
AMF. This leaves three GOME retrievals: Leue et al.
[2001], Richter and Burrows [2002], and Beirle et al.
[2004]. The main advantage in the latter retrieval is the
high resolution of 80km � 40km (a special narrow
observing mode of GOME was used), which is paid for
by a longer time to reach global coverage and less data for
calculating mean values. As the resolution of this analysis
is limited by the model resolution T63 (�1.87�lon �
1.89�lat), this advantage is not relevant here. So in this
paper, we will use the two earliest GOME retrievals: by
Leue et al. [2001], henceforth called GOME Leue, and by
Richter and Burrows [2002], henceforth called GOME
Richter. Both data sets consist of monthly mean values
for the period from 1996 to 2001 with a spatial resolution
of 0.5�lon � 0.5�lat. Both groups used the DOAS tech-
nique [Platt et al., 1979] to retrieve the slant column
densities and to avoid a CTM, and both groups assumed
the tropospheric vertical profile of NO2 to be independent
of season and location. Leue et al. [2001] applied an IPA to
separate tropospheric and stratospheric NO2. They used all
pixels regardless of cloud coverage but applied a global
factor of four to correct for the influence of the clouds.
Richter and Burrows [2002] used the RSM for the sepa-
ration of the stratospheric NO2; their reference sector is
placed over the Pacific Ocean between 170�W and 180�W
longitude. They used only pixels with a cloud coverage of
less then 10%, so the influence of clouds on radiative
transfer is small. Therefore, their data set contains unde-
fined values where the cloud coverage was too high on too
many days in a given month.
2.1.3. Annual Mean Values
[8] In the following, correlations between annual mean

fields of the various data sets are determined at the resolu-
tion of the MOZART-2 model (T63, see below). Therefore,
the monthly values were averaged and the resolution was
changed. To deal with the gaps at undefined values in the
GOME Richter data set, at first a mean field for each of the
seven years from 1996 to 2001 was calculated. To avoid a
bias due to the annual variability, a pixel was assigned a
defined value only if the pixel was defined in all months of
that year. Then we averaged over the seven annual mean
fields. By this, the gaps could partly be filled if they were
defined in the mean of at least one of the years. After that
the resulting field was interpolated to the resolution T63. In
this step, a pixel was assigned a defined value only if at least
50% of the area of the pixel was covered with defined
values in the original resolution.

2.2. MOZART-2 Model Calculations

[9] MOZART (Model for OZone And Related chemical
Tracers) is a global 3D CTM developed at NCAR (National
Center of Atmospheric Research) in Boulder, Colorado,
NOAA/GFDL (General Fluid Dynamics Laboratory) in
Princeton, New Jersey, and at the Max Planck Institute for
Meteorology in Hamburg, Germany. The current version
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MOZART-2 is published [Horowitz et al., 2003] and
released as a community model.
[10] MOZART-2 simulates the mixing ratios of 63

chemical species from the surface of the earth up to the
lower stratosphere. The chemical mechanism contains 167
chemical and photochemical reactions. The calculations for
this study were done with a spatial resolution of T63
(�1.87�lon � 1.89�lat), 31 hybrid s–levels as vertical
coordinate, and a time step of 15 minutes. As meteoro-
logical constraint, analysis files from the European Centre
for Medium-Range Weather Forecast (ECMWF) of the
year 1995 were used.
[11] Especially for short-lived species such as NO2, a

crucial part of a CTM is the emission inventory used.
MOZART emissions are based on the EDGAR 3 inventory
(see section 2.2.1) with additions and modifications as
described by Horowitz et al. [2003]. A second model run
was done, for which the anthropogenic NOx emissions were
exchanged by a source based on satellite images of the
nighttime lights of the world, see section 2.2.2. In this
paper, we use the term anthropogenic as in the input files for
the MOZART model: by anthropogenic emissions we mean
fossil sources (energy and traffic), industrial processes and
waste; due to their different variations in time, anthropo-
genic biomass burning (often hard to distinguish from
wildfires) and agricultural emissions are part of the biogenic
(not necessarily natural) emissions.
2.2.1. Emission Inventory: EDGAR 3
[12] The current version of the emission inventory

EDGAR 3 (Emission Database for Global Atmospheric
Research) is an estimate for the year 1995 and was
described in detail by Olivier et al. [2001]. The main
steps for estimating anthropogenic emissions are the fol-
lowing: Compilation of economic activity data for all
countries of the world, transformation of these activity
data to emissions by use of national or regional emissions
factors for each included trace gas and finally mapping
these emissions to a geographical grid of the resolution
1� � 1� by use of gridded activity data maps. As default
population density maps (urban, rural) were used for fuel
combustion, except for power plants and industries in
Europe and except for steel and cement plants globally,
for which point source maps were used. The within-
country distribution of large scale biomass burning emis-
sions (forests and savannahs) were based on a ATSR
satellite data for fire counts in 1997. The uncertainty
for the estimation of the global source strength of the
anthropogenic NOx emissions is stated to be about 50%
(95% confidence interval, 25% at one standard deviation),
mainly due to the uncertainty in road transport and large
scale biomass burning emissions.
2.2.2. OLS: Nighttime Lights of the World
[13] As an independent distribution pattern, satellite

images of the Operational Linescan System (OLS, part of
the Defense Meteorological Satellite Program of the U.S.
Air Force) [Dubach and Ng, 1988] shall be used as a proxy
for the anthropogenic NOx emissions. Images from October
1994 until March 1995 were evaluated by Elvidge et al.
[2001], who constructed global maps with high resolution
(0.5km � 0.5km) of human settlements, fires, gas flares and
heavily lit fishing boats according to the frequency of
occurrence and the geographical location of the detected

lights. The detector settings are such that even very weak
lights can be detected. The disadvantage of this is that for a
medium-sized town the detector is already saturated. So the
data product does not contain light intensities but for each
pixel the percentage of observations when this pixel was
detected as lighted. Most cities are detected at 90%–100%
of all observations, but small villages (�200 inhabitants) are
detected in only 10%–20% of the observations [Elvidge et
al., 2001]. Doll et al. [2000] analyzed country-total relation-
ships between the lighted area of the human settlements and
socioeconomic parameters such as population density, na-
tional gross product, electrical energy consumption and CO2

emissions. For the country-total relationship between
lighted area of human settlements and CO2 emissions per
country from EDGAR 2 they found a correlation coefficient
of R = 0.89. Significant outliers were countries such as
Russia, China or North Korea, which according to the
authors is due to less bright street lighting in centrally
planned economies.
[14] We will use the lights of the human settlements as a

proxy for the pattern of the anthropogenic NOx emissions
(fossil, industrial and waste, see section 2.2): Much light
indicates the existence of many people with a certain
industrial infrastructure who are emitting much NOx. To
turn the lights into NOx emissions for the model we
integrated over all lighted pixels in each T63 box; to get
an emission density the result was divided by the total area
of the box. Due to the summation over more than 3500
pixels, an originally discrete quantity (percentage of lighted
observations, in most cases 100%) turns into a quasi
continuous quantity, as an emission field should be. We
assumed the anthropogenic emissions to have no annual
variability, which seems an acceptable approximation since
we will only analyze annual mean fields later. The field was
scaled with the total source strength of the anthropogenic
EDGAR 3 NOx emissions, so the distribution pattern of the
light-based source is independent of EDGAR, but not the
global source strength.
[15] At the resolution T63, the correlation coefficient

between EDGAR anthropogenic (without biomass burning
and agriculture) and the light source is R = 0.79. Assuming
no common errors, R2 = 62% of common variance originate
in the true field contained in both. As the correlation of the
GOME retrievals to the light field is as good as that to
EDGAR (see Table 4), the remaining 38% variance of the
light field cannot entirely be caused by errors. This will be
quantified in section 3.2. Thus, at the resolution T63, a
combination improving both fields is possible and will be
carried out in section 3.3.
2.2.3. Model Column Densities
[16] Both with the standard model source files (based on

EDGAR 3) and with source files where the anthropogenic
NOx emissions were replaced by the light-based source, a
MOZART-2 model calculation of one and a half years was
done, of which only the last year was used to avoid
contamination by the spin-up in the model results.
[17] For better comparison with the GOME fields, a

model output at 10:30 local time (i.e. the GOME overpass
time) was used. Tropospheric column densities were calcu-
lated by integrating from the surface to the thermal tropo-
pause [WMO, 1957]. We did not use the RSM as in the
GOME retrieval by Richter and Burrows to avoid common
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errors between the two data fields. For the global annual
mean tropospheric NO2 column density field, the modeled
local time (10:30) values are highly correlated to
corresponding columns based on daily mean values (R =
0.99), so for correlation analyses, it is not critical whether
daily mean values or local time values are used.
[18] In Table 1 (left) the spatial correlation coefficients of

the two model calculations with EDGAR and the lights
source and the two GOME retrievals at the grid points
defined in all sets are listed. The high correlations of the
model calculation with the anthropogenic NOx source based
on the lights with the satellite fields again justify the use of
the lights as proxy for anthropogenic emissions.
[19] Savage et al. [2004] correlated annual mean fields of

the tropospheric NO2 column densities of the year 1997 of
GOME measurements and a model calculation by the
global CTM TOMCAT. They found a spatial correlation
coefficient of R = 0.79. The higher correlation can be
explained by the GOME retrievals they used: The tropo-
spheric vertical profile of the NO2 used in the retrieval was
calculated by the same model TOMCAT the comparison
was done with later, and the subtraction of the stratospheric
part of the columns was done both for model and satellite
by a combination of RSM and stratospheric model. This
self consistent comparison allows the examination of errors
outside the assumptions made during the retrieval. In this
paper, however, we want to follow a different approach:
We want to minimize the common errors between the
examined fields to be sure that the common variance of
two fields is due to common truth rather than to common
errors.
[20] Since several direct comparisons between GOME

measurements and model calculations are published already
[e.g., Velders et al., 2001; Lauer et al., 2002; Savage et al.,
2004], in this paper, the fields shall be compared by
correlation analysis, with a purely statistical approach to
the errors. For a detailed discussion of GOME retrieval
errors, see, e.g., Boersma et al. [2004] and for model errors
see, e.g., Savage et al. [2004].

2.3. Correlation Analysis

[21] The correlation analysis, as described in Appendix
A, connects correlation coefficients with relative error
variances and covariances. It will be performed in those
areas dominated by anthropogenic emissions for the four
fields X1: MOZART EDGAR, X2: MOZART lights, X3:
GOME Richter, X4: GOME Leue. For these column density
fields, error ranges will be given.
2.3.1. Area of the Analysis
[22] In the following, the global view is narrowed to those

areas dominated by anthropogenic emissions, because here

two independent estimations of the source field are avail-
able: EDGAR 3 and the lights. A second requirement is that
a grid point must be placed over land, since NO2 columns
over the oceans will be dominated by transport rather than
by emissions. To include various coastal cities, a grid point
is taken into account if at least 10% of its area is land area.
Furthermore, all fields must have defined values in the
whole area of the analysis. To sum up, the area of the
analysis contains all grid points where (1) all four fields
have defined values, (2) 1

2
anthropogenic emissions

(EDGAR + lights) > other emissions EDGAR, and (3) land
fraction of area >10%. This leaves 1463 out of 18432 grid
points. The spatial correlation coefficients in this area are
listed in Table 1 (right), the masked fields are shown in
Figure 1.
2.3.2. Pattern Errors: Ranges
[23] As shown in Appendix A, pattern errors (eii, eij) and

correlation coefficients (Rij) of data sets are connected by
equation (A5):

R2
ij 1� eij
� �2¼ 1� eiið Þ 1� ejj

� �
;

with eii and eij defined as the relative error variances and
covariances, respectively. For four fields, this equation
represents a system of six equations with ten unknown
variables: The pattern errors of the four fields eii and the
six relative error covariances eij between the fields. There
will surely be common errors between the two model
calculations because the MOZART errors are common in
both fields. Likewise, there will be common errors
between the two satellite retrievals because the data come
from the same instrument and the evaluation algorithms
are not independent. To assume independence of the errors
between the model calculations on the one hand and the
satellite retrievals on the other hand seems plausible: e13 =
e14 = e23 = e24 = 0. However, it is not possible to solve
the six equations for the remaining six variables: The
determinant of the system becomes zero in that case
which means there are either no solutions or an infinite
number. Solving the system for the four relative error
covariances yields:

R23R14

R13R24

¼ 1� e13ð Þ 1� e24ð Þ
1� e23ð Þ 1� e14ð Þ : ð1Þ

If all the error covariances are zero, the ratio of the
correlation coefficients on the left side of the equation
must be one, which means there is one degree of freedom
left and leaves an infinite number of solutions. If the ratio

Table 1. Spatial Correlation Coefficients Rij of the Four Column Density Fields Xi
a

All Grid Points Defined Restricted to Examined Area

Spatial Correlation MOZART Lights GOME Richter GOME Leue MOZART Lights GOME Richter GOME Leue

MOZART EDGAR 0.91 ± 0.01 0.72 ± 0.01 0.63 ± 0.02 0.84 ± 0.02 0.71 ± 0.03 0.57 ± 0.03
MOZART lights 0.72 ± 0.01 0.66 ± 0.02 0.69 ± 0.03 0.61 ± 0.03
GOME Richter 0.85 ± 0.01 0.86 ± 0.01

aStated errors: one standard deviation, gained by the bootstrap method, left: using all grid points defined in each data set, right: restricted to examined
area (see section 2.3.1).
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significantly differs from one, the system is inconsistent
with the assumptions and there are no solutions. Inserting
the correlation coefficients from Table 1 (right),
equation (1) yields:

R23R14

R13R24

¼ 0:92� 0:02;

the error range was determined by the bootstrap method
[Efron, 1982], and corresponds to one standard deviation.
Thus, the assumption e13 = e14 = e23 = e24 = 0 is not
consistent with equation (A5) and the correlation coeffi-
cients in Table 1 (right). So we changed the assumption: We
suppose the errors between the model calculations on the
one hand and the satellite retrievals on the other hand to be as
independent as possible. Therefore, the relative error covar-
iances in the denominator on the right side of equation (1)
can be set to zero: e23 = e14 = 0. Further, we distribute the
remaining error covariance symmetrically between the

remaining variables: e13 = e24 = 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R23R14

R13R24

r
� 0.04. This

means we assume no common errors between MOZART
lights and GOME Richter as well as between MOZART
EDGAR and GOME Leue, but a small common error
fraction of 4% between MOZART EDGAR and GOME
Richter as well as MOZART lights and GOME Leue. This
is a purely statistical argument, we will not try to interpret
it physically. This assumption is consistent with the data,
but in that case there is one degree of freedom left. For
given (assumed) e13, e14, e23, e24, the remaining variables
e12, e34, e11, e22, e33 and e44 can vary within ranges given

by the constraint that all of them are relative errors and so
must simultaneously lie between zero and one:

0 � eij � 1 8 i; j;

the ranges are listed in Table 2.
[24] If for one of the quantities a value in the allowed

range is chosen, then all the others are fixed. Limit 1 is the
limit of vanishing error covariance between the model
calculations (e12 = 0) and thus minimal errors for the
MOZART fields and maximal errors for the GOME fields.
Limit 2 is the result of vanishing error covariance between
the satellite retrievals and thus minimal errors of the GOME
fields (the pattern error of GOME Richter vanishes here as
well) and maximal errors of the MOZART fields. Varying
any of the variables beyond limit 1 would result in a
negative value for e12, and beyond limit 2 in negative
values for e33 and e34. The range of the pattern error of
GOME Richter is the only one including zero: For this data
set we cannot exclude that its variance contains no error at
all.
[25] These error ranges will now approximatively be

compared to the error estimates given in the actual GOME
retrievals, using equation (A7). For this, the additional
assumption of normally distributed errors is necessary, see
Appendix A2. Richter and Burrows [2002] state that their
tropospheric columns could be up to a factor of two smaller
than the true columns, which corresponds to b = 0. . .1/2
and c = 0 in equation (A7). Leue et al. [2001] estimate an
error range of 25% to 50%, corresponding to b = 1/4 . . . 1/2
and again c = 0. Inserting these values together with the

Figure 1. Annual mean fields of tropospheric NO2 column densities, MOZART model calculations, and
GOME measurements; color scale linear from minimum to maximum for each field to compare patterns
rather than absolute values; the area not analyzed is masked white.
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mean values �Xi and standard deviations si of the fields in
the area of interest (Table 3) into equation (A7), yields
eRichter,app = 0.0 . . . 0.5 and eLeue,app = 0.3 . . . 1.0. These
error estimates based on the retrieval itself agree very well
with the independently gained error ranges from correlation
analysis in Table 2; they seem to be estimated rather
conservatively as it is often done if errors can only be
estimated roughly.
2.3.3. Weighting Factors: Ranges
[26] As described in Appendix A3, for fields with known

pattern errors, a combination field with minimized pattern
error can be constructed, with weighting factors wi accord-
ing to equation (A9). The error ranges of the fields corre-
spond to ranges for the weighting factors, each allowed
combination of eii and eij results in a unique set of wi. While
pattern errors and the fractions of the variances of the
original fields in the combination are independent of con-
stant scaling factors, this does not apply to the weighting
factors: They are inversely proportional to scaling factors of
the fields. Since neither mean values nor standard deviations
of the fields seem to be directly comparable (see Table 3),
for easier comparison, the fields were standardized before
calculating the ranges for the weighting factors wi. The
limits of the ranges of the wi corresponding to the limits of
the ranges of the eii are shown in Table 2. At limit 1 (no
error covariance between the two model calculations),
MOZART EDGAR and MOZART lights contribute stron-
gest to the combination field, followed by GOME Richter,
whereas GOME Leue does not contribute. At limit 2
(maximal error covariance between the model calculations),
the pattern error of GOME Richter vanishes: A field that is
completely true would only get worse by mixing with other
fields, so here the combination field solely consists of
GOME Richter.

3. Anthropogenic NOx Emissions

[27] After examining tropospheric NO2 column densities,
a correlation analysis shall now be applied to anthropo-
genic NOx emissions. To do this, at first emission fields
must be estimated from the satellite fields, then the pattern
errors of the emission fields can be determined in the area
dominated by anthropogenic emissions (see section 2.3.1).
Finally, a combined emission field with minimal pattern
error will be constructed. By a discussion of outliers, areas
will be identified where the disagreement of the emission
fields and thus the uncertainty of the combination field is
highest.

3.1. Estimating Emissions From Satellite Columns

[28] In this section, several transformations will be intro-
duced to estimate emission fields from the GOME measure-
ments. These transformations shall be simple, and they shall
restrict the change of the distribution pattern of the GOME
fields to a sharpening of the original patterns without
imprinting model errors. An inversion of the model would
violate both requirements, the model will be used here only
to find transformations that improve the correlation of
model sources and columns.
[29] Due to the short lifetime of NOx (�1 day), in the

spatial resolution used here (T63) the distribution patterns of
the emissions already closely correspond to those of the
tropospheric NO2 column densities. Within the MOZART
model this can be quantified by the spatial correlation
between model sources and columns: Its value for the annual
mean fields of emissions and resulting tropospheric columns
is R = 0.82. This leaves 1 - R2 � 32% unexplained variance
as a consequence of advection and turbulent diffusion as well
as a spatial dependency of the lifetime and the NO fraction of
the NOx. For the area dominated by anthropogenic emissions
(section 2.3.1), the correlation coefficient between anthro-
pogenic emissions and column densities is nearly the same
(R = 0.83). At least within the model, the all other emissions
in that area (biomass burning, agriculture, soil emissions, and
air planes and lightning as volume sources) do not change the
pattern but rather have, together with a background concen-
tration, the effect of an offset; while their fraction of the
source strength in that area amounts to 17%, they contribute
only 1% to the spatial variance.
3.1.1. Lifetime, NO Fraction and Source Strength:
Scaling
[30] To construct a new source not only as a pattern, but

which can be used as input field for a CTM, we have to
assume a realistic source strength. Since a global scaling
factor does not influence the correlation coefficients, this
information cannot be gained by the pattern errors. For
simplicity, we will assume the strength of the anthropogenic
emissions of EDGAR 3 in the area dominated by anthro-
pogenic emissions to be correct, and scale the GOME fields
accordingly.
[31] Other scaling possibilities are to account for lifetime

and NO fraction of NOx by multiplying the column
densities either as a whole field with the global model
ratio of the annual mean of NOx sources to corresponding
tropospheric NO2 columns (done by Leue et al. [2001]), or
grid point for grid point with the corresponding local value
(done by Martin et al. [2003]). Similar to the differences in
the mean values in Table 3, the total source strengths of the
resulting fields will differ, and scaling by local factors
gained from the model changes the patterns of the satellite

Table 2. Ranges for the Pattern Errors eii (Relative Error

Variances) of the Fields Xi and Corresponding Ranges for the

Weighting Factors wi for Standardized Fieldsa

Limit 1 Limit 2 Limit 1 Limit 2

Field Xi Pattern Error eii Weight wi

MOZART EDGAR 0.17 0.54 0.40 0.00
MOZART lights 0.15 0.53 0.49 0.00
GOME Richter 0.44 0.00 0.12 1.00
GOME Leue 0.60 0.28 �0.02 0.00

aLimit 1 corresponds to e12 = 0 and e34 = 0.44; limit 2 corresponds to
e34 = 0 and e12 = 0.45.

Table 3. Mean Values �Xi and Standard Deviation si of EDGAR 3

Anthropogenic and of the Annual Mean Tropospheric Column

Density Fields Xi

Field Xi
�Xi si

EDGAR 3 anthropogenic 9.50 � 1010cm�2s�1 6.12 � 1010cm�2s�1

MOZART EDGAR 2.35 � 1015cm�2 2.33 � 1015cm�2

MOZART lights 2.34 � 1015cm�2 2.04 � 1015cm�2

GOME Richter 1.17 � 1015cm�2 0.92 � 1015cm�2

GOME Leue 1.88 � 1015cm�2 0.93 � 1015cm�2
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fields and is highly dependent both on model chemistry
and transport, even if the model meteorology field and
satellite measurements are of the same year. We therefore
chose the simple scaling described above.
[32] The global scaling, however, is not sufficient to

convert columns into sources: Figure 2 (top) shows the
cumulative frequency distributions F(Xi) of the annual mean
EDGAR 3 anthropogenic emissions over the analyzed area,
of the corresponding MOZART calculation and of the
GOME tropospheric columns all scaled to the same source
strength over that area. Despite the scaling, the distributions
differ drastically, especially the high source values are not
obtained in any of the column fields. So further trans-
formations are needed. The model calculation will serve as
a testcase, because for the model columns the corresponding
anthropogenic emissions are known. The aims for the trans-
formed columns are as follows: (1) better reproduction of the
high values of EDGAR anthropogenic (better agreement of
the black and red curve in Figure 2 (top)), (2) agreement with
both the source strength and the variance of EDGAR
anthropogenic, and (3) high correlation with EDGAR an-
thropogenic. The following transformations to account for
turbulent diffusion and all those emissions not in our focus
were developed to achieve these aims and still be simple.
3.1.2. Turbulent Diffusion: Deconvolution
[33] Within the lifetime of one day, most of the model

transport goes to the neighboring grid points. An easy
possibility to simulate turbulent diffusion to the nearest
neighbors without the need of explicit assumptions about
meteorological parameters is a convolution with a kernel

K ¼

1 1 1

1 n 1

1 1 1

0
BBBB@

1
CCCCA;

which contains a parameter n: The smaller n the stronger the
smoothing. This parameter was chosen to fulfill two criteria:
To maximize the correlation of convoluted sources and
corresponding model columns and simultaneously to
minimize the pattern error (see section 3.2) of the
satellite-based emission estimates gained by deconvoluting
the GOME fields with the same kernel. This combination
was achieved optimally for n = 8. The spatial correlation
coefficient between deconvoluted annual mean tropospheric
column densities and corresponding source fields increased
to R = 0.90.
3.1.3. Other Emissions and Background
Concentration: Offsets
[34] As explained above, emissions from biomass burn-

ing, agriculture, soil, air planes and lightning as well as
background concentrations have the effect of an offset even
in the model fields. The satellite fields may have additional
offsets of positive or negative signs resulting from the
subtraction of the stratospheric columns in the retrieval.
Similar to scaling factors, offsets have no influence on
correlation coefficients or pattern errors but have to be
eliminated to obtain a realistic emission field. It is assumed
here that the EDGAR 3 anthropogenic emissions don’t have
an offset; the offsets of the other fields are identified relative
to that field.
[35] To identify offsets, we focused on the small values in

the cumulated frequency distribution F(Xi). In Figure 2
(top), the scale of the y-axis is chosen so that a Gaussian
distribution would be displayed as a straight line. For small
values, the slope of F(Xi) of the scaled GOME fields is
nearly constant, which may be interpreted as Gaussian
noise, both instrumental and due to transport. After decon-
volution, this noise is even amplified. To eliminate the
offsets relative to EDGAR 3 anthropogenic, noise was
added to that source, which decreased the slope of the
corresponding F(Xi) and shifted the beginning of that curve

Figure 2. Cumulative frequency distribution. (top) Annual mean tropospheric column density fields of
MOZART EDGAR, GOME Richter, and GOME Leue scaled to the source strength of the anthropogenic
EDGAR emissions. (bottom) Annual mean of the anthropogenic emissions based on the same fields
estimated by applying the transformations described in subsections 3.1.1 to 3.1.4, both in comparison
with the EDGAR 3 anthropogenic emissions.
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to negative values. Then an offset was subtracted from the
other fields followed by rescaling to the EDGAR source
strength. Both were done iteratively until, for small values,
the curves of F(Xi) for source and former column fields
agreed well.
3.1.4. Maxima and Variance: Exponent
[36] After deconvolution, elimination of offsets and

rescaling, the model-based source estimate Xcol, est still does
not reproduce the maxima and the variance of the
corresponding anthropogenic emissions Xsrc. The relation-
ship between the EDGAR-based model columns and the
corresponding sources is slightly nonlinear: A linear fit of
logarithmized columns and sources performed using the
algorithm fitexy described in the numerical recipes [Press et
al., 1997] assuming errors in both coordinates yields a slope
of aED = 1.16, which for the not-logarithmized fields
corresponds to an exponent Xsrc = Xcol, est

a . Since this
exponent is smaller for the lights (ali = 1.05), in the
following, the positive values of the column fields were
potentiated with the mean value am = 1.11, followed by a
rescaling.
[37] By the exponent, the high values are increased more

than the low values. By the rescaling, all values were
decreased equally, so as a net effect, small values were
decreased and high values were increased which suppresses
the noise at the origin of the curves of the cumulative
frequency distributions. In Figure 2 at the bottom, the
curves F(Xi) are shown both for the EDGAR anthropogenic
emissions and for the column-based source estimates after
rescaling, deconvolution, elimination of offsets and poten-
tiation. These curves agree quite well.

[38] After the potentiation, the correlation between the
annual mean of the EDGAR 3 anthropogenic source and the
corresponding column-based source estimate is again
slightly increased to R = 0.92. The unexplained variance
between model columns and corresponding anthropogenic
sources in the examined area could altogether be reduced by
all transformations from 32% (see section 3.1) to 1 � R2 �
15%. Considering the fact that the spatial dependency of the
lifetime and of the NO as well as the distribution pattern of
the other emissions are unaccounted for and that transport is
only partly considered by deconvolution and potentiation,
this reduction is remarkable. A reduction beyond that would
require increasingly sophisticated and potentially erroneous
assumptions where there is little potential for improvement
left.
[39] In Figure 3 in the lower two panels, the GOME-

based anthropogenic NOx emission estimates in the area
dominated by anthropogenic emissions are shown with a
logarithmic color scale. In comparison to the original

Figure 3. Annual mean values for the estimates of anthropogenic NOx emission fields: EDGAR 3
anthropogenic, light-based, GOME-based (2 retrievals), color scale: logarithmic.

Table 4. Spatial Correlation Coefficients Rij of the Annual Mean

Source Field Estimations and Untransformed GOME Retrievals in

the Analyzed Areaa

Rij Xli XRi XLeu

GOME
Richter

GOME
Leue

XED 0.73 ± 0.03 0.69 ± 0.04 0.57 ± 0.04 0.67 ± 0.04 0.55 ± 0.04
Xli 0.66 ± 0.04 0.59 ± 0.04 0.64 ± 0.04 0.57 ± 0.04
XRi 0.83 ± 0.02 0.93 ± 0.02
XLeu 0.96 ± 0.02

aError estimates: one standard deviation, gained by the bootstrap method.
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column density fields in Figure 1 (linear color scale), the
distribution pattern is sharpened. In Table 4, the correlation
coefficients of the anthropogenic source estimates (EDGAR
and lights) and the GOME columns with and without these
transformations are listed.

3.2. Pattern Errors

[40] For the four anthropogenic emission fields depicted
in Figure 3, pattern errors can be calculated, since the errors
of three fields, EDGAR (XEd), light-based (Xli) and GOME-
based (XRi, XLeu), can be assumed to be independent. For
these errors there will be given uncertainty estimates. These
estimates were done with the bootstrap method and corre-
spond to one standard deviation.
[41] The pattern errors for the four emission fields can be

calculated by equation (A5), using the correlation coeffi-
cients listed in Table 4. As for the column density fields, the
equation is a system of six equations and ten unknown
variables. As for the columns, the common errors of the
source estimates XED and Xli with the GOME-based esti-
mates XRi and XLeu, respectively, (e13, e14, e23, e24) will be
assumed to be as small as possible. The minimal values for
these quantities compatible with the correlation coefficients
in Table 4 follow, analogous to the columns, from the

relation e23 = e14 = 0 and e13 = e24 = 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R23R14

R13R24

r
�

0.05 ± 0.02. Contrary to the column fields, there is no model
applied here to both EDGAR anthropogenic and the light
source. So here it is possible to further assume no common
pattern errors between EDGAR anthropogenic and the light-
based NOx source: e12 = 0. With these assumptions,
equation (A5) can be solved, the solutions are listed in
Table 5 (top).
[42] As explained in section A2, a pattern error cannot be

transformed into a mean error at each grid point. But
assuming the error model equation (A6) to hold for XED,
we can calculate parameters consistent with the pattern error
eED = 0.27 ± 0.05 found here. Solving equation (A6) for b
with c = 0 (no offset) and inserting the values for �XED and
sXED from Table 3, we obtain b � 0.5. This estimate for the
mean error at each grid point of EDGAR anthropogenic
(fossil, industry, waste, see above) is twice as big as the
stated error for its total (25% at one standard deviation).

3.3. Construction of a Combined Emission Field

[43] Once the pattern errors of the emission fields are
known, an optimized field can be constructed. This will be
done first for the area the pattern errors were calculated for
and then be extended to the rest of the globe.

3.3.1. Area Dominated by Anthropogenic Emissions
[44] As described in Appendix A in section A3, the

emission fields can be combined minimizing the pattern
error of the resulting field. The corresponding weighting
factors are also listed in Table 5. One aim of this analysis is
the construction of a new source field with improved
distribution pattern of the anthropogenic NOx source, but
also with realistic source strength. So here the weighting
factors wi do not refer to standardized fields but to the fields
as constructed in section 3.1. After the transformations
described in that section, the fields only slightly differ in
their variances, so the weighting factors for these fields and
the standardized fields differ less than the stated error
estimates of one standard deviation gained by the bootstrap
method.
[45] The pattern error of the combined field is given by

equation (A8) and amounts to ec = 0.13 ± 0.02, which is a
reduction of 50% compared to the eED = 0.27 ± 0.05, the
smallest pattern error of the input fields.
[46] In Table 5 (bottom), the spatial correlation coeffi-

cients between the input fields and the combination are
shown. Apart from the correlation between the two satellite
source estimates, which contain common errors, the corre-
lations of the input fields with the combination are higher
than between the input fields themselves (compare Table 4).
3.3.2. Global Emission Field
[47] To be able to construct a global emission field, we

assumed that the pattern errors of the input fields gained in
the area dominated by anthropogenic emissions are also true
for the rest of the globe. Using the relative error variances eii
and error covariances eij listed in Table 5, we calculated
weighting factors for the combination minimizing the pat-
tern errors of three and two fields, respectively, analogue to
the combination of four fields.
[48] A realistic emission field must not contain negative

values. As the small values in the GOME-based source
fields are dominated by noise, which was in part amplified
by deconvolution, we applied as a minimum threshold for
the satellite fields not zero but 1 � 1010cm�2s�1. So we
combined the four input fields at those continental grid
points of the area dominated by anthropogenic emissions
where both GOME-based source estimates displayed de-
fined values greater than 1 � 1010cm�2s�1 (area 1). At the
continental anthropogenically dominated grid points where
either XLeu or XRi was below the threshold, only XED, Xli and

Table 5. Relative Error Variances eii and Corresponding Weight-

ing Factors wi for the Optimal Combination of the Fields Xi and

Spatial Correlation Coefficients Between the Four Input Source

Fields and the Combination Source in the Area Dominated by

Anthropogenic Emissionsa

XED Xli XRi XLeu

eii 0.27 ± 0.05 0.28 ± 0.06 0.40 ± 0.05 0.56 ± 0.06
wi 0.34 ± 0.07 0.45 ± 0.08 0.19 ± 0.04 0.02 ± 0.03
RXi, Xc

0.92 ± 0.01 0.92 ± 0.01 0.82 ± 0.02 0.71 ± 0.03

aError estimates: one standard deviation, gained by the bootstrap method;
relative error covariance of the two GOME fields: e34 = 0.38±0.05.

Figure 4. Area 1: XED, Xli, XRi and XLeu will be combined;
area 2: XED, Xli and XRi, area 3: XED, Xli and XLeu, area 4:
XED and Xli will be combined, respectively.
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either XRi or XLeu were combined (area 2 and area 3,
respectively). At those continental grid points that were
either dominated by other emissions or where both GOME-
based sources were below the threshold or undefined, only
XED and Xli were combined (area 4). The four areas with
differing combinations of the fields are shown in Figure 4.
Over the oceans, the ship emissions were taken from
EDGAR 3. The values of the weighting factors wi in each
area, the number of grid points M where this combination
was built and the resulting pattern error ec of that combi-
nation are listed in Table 6. To obtain a global field, we put
those areas together and built the mean value of the single
pattern errors weighted with the corresponding number of
grid points. This results in a total pattern error for conti-
nental anthropogenic NOx emissions of ec, tot = 0.15±0.03.
The four input fields and the resulting combination in the
area dominated by anthropogenic emissions are shown
enlarged for North America, Europe and East Asia in
Figure 5. The main difference between EDGAR 3 anthro-
pogenic and the combination source is that in the latter the
industrial hot spots are not as pronounced compared to other
cities and less populated areas as in EDGAR.
3.4. Outliers: Areas That Need Further Investigation

[49] Correlation coefficients, error variances and weight-
ing factors are properties of the total fields Xi, they cannot
be attributed to single grid points. But single large outliers
in the fields can reduce correlations and by that increase
pattern errors significantly. By their identification, areas will
be determined where the uncertainty of the combination field
is highest and which therefore need further investigation.
The outliers were identified as described in Appendix A in
section A4 to the a = 0.005 level of significance.
[50] Since all of the outliers are found either in North

America, Europe, East Asia or South Africa, their geo-
graphical location in these areas is shown enlarged in
Figure 6. The most significant outliers are those of the light
source in eastern China (source strength of the light
emissions far too low, in agreement with Doll et al.
[2000], see section 2.2.2) and those of the source estimation
based on GOME Leue over the Highveld near Johannesburg
in South Africa (GOME Leue too high). In eastern China,
outliers are identified in other fields as well: GOME Richter
and EDGAR both have higher values there than the lights,
but the patterns do not coincide. China is an area of rapid
growth over time [see, e.g., Richter et al., 2005], where a
combination of fields for the year 1995 (EDGAR 3, lights)
and mean fields for the years 1996–2001 (GOME) is
bound to be error prone, so that further investigations are
necessary.
[51] Many outliers of the EDGAR anthropogenic source

are located at cities with high emissions (e.g. New York or

London). This could be due to EDGAR overestimating
industrial hot spots in the northern hemisphere. But since
transport plays an important role at these cities (high
gradient of the emissions, advection of clean air) it is
also possible that at those locations the transformations
applied to the GOME columns were insufficient to com-
pensate for transport, so that their true values at these
places would actually be higher. The grid point containing
London for example is situated (at resolution T63) close
enough to the Atlantic Ocean to get advection of clean air
by mostly westerly winds, which we could not compensate
for at all. In addition to that, at grid points where two
fields display outliers, those in one field could be induced
by outliers in the other field; therefore it is not possible to
determine uniquely whether only one of the fields and if
so which of them, or both fields are responsible for the
outlier. We therefore didn’t eliminate the outliers for
the combination but use them to indicate areas where
the uncertainties both of the combination and of the input
fields is highest.

4. Summary and Outlook

[52] The method of correlation analysis developed here
allows the determination of relative error variances for at
least three data sets whose errors can be assumed to be
independent. As an example, the method could be a tool
for an instrument intercomparison where several indepen-
dent instruments are measuring time series of the same
physical quantity. In this paper, the method was applied to
annual mean tropospheric NO2 column density fields over
areas dominated by anthropogenic emissions measured by
the GOME satellite instrument and modeled by the global
CTM MOZART-2 as well as to anthropogenic NOx

emission fields. The emissions used were the EDGAR 3
inventory and an estimation for anthropogenic NOx emis-
sions based on satellite images of human settlements
during night time. To compare the columns, the MOZART
model was applied to the emission fields, to compare the
emissions, simple transformations were developed to
transform the GOME columns into emission estimates.
Assuming independent errors for the three data sources
GOME, EDGAR and lights, ranges could be given for the
pattern errors of the NO2 column density fields, and
pattern errors with stated uncertainties could be deter-
mined for the NOx emission fields. The pattern error of
the EDGAR 3 anthropogenic NOx emission field obtained
was (27 ± 5)%, which could be reduced by combining all
fields to (15 ± 3)%.
[53] In those areas indicated by the outliers, further

analyses are required. When available, long time series of

Table 6. Weighting Factors Resulting From the Error Variances in Table 5 to Minimize the Pattern Error in the

Combination of Four, Three, and Two Fields, Number of Grid Points in the Corresponding Area Over Land, and

Resulting Pattern Error of the Combination

Area wED wli wRi wLeu M ec

1 0.34 ± 0.07 0.45 ± 0.08 0.19 ± 0.04 0.02 ± 0.03 789 0.13 ± 0.02
2 0.34 ± 0.05 0.46 ± 0.07 0.20 ± 0.04 — 160 0.13 ± 0.02
3 0.38 ± 0.06 0.46 ± 0.07 — 0.16 ± 0.04 198 0.14 ± 0.02
4 0.44 ± 0.06 0.56 ± 0.07 — — 3712 0.16 ± 0.03
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Figure 5. Areas dominated by anthropogenic emissions: input source fields and optimal combination.
(top) North America, (middle) Europe, and (bottom) East Asia.
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other satellite instruments with higher precision and spatial
resolution, as e.g. SCIAMACHY on ENVISAT, should
reduce the uncertainties. Such data will also allow an
analysis at region level, which is beyond the scope of this
study, since it requires a higher number of grid points per
region for error statistics and the consideration of seasonal
variability and the correct meteorology.

Appendix A: Correlation Analysis

[54] The relationship between correlation coefficients and
error variances and covariances is derived; it will be shown
how fields with known errors can be combined to minimize
the relative error variance of the combination, and the
treatment of outliers in this paper is explained.

A1. Correlation Coefficients and Pattern Errors

[55] The square of the linear correlation coefficient Rij

[Hartung and Elpelt, 1987] of two quantities Xi and Xj

R2
ij ¼

cov Xi;Xj

� �2
var Xið Þvar Xj

� � ; ðA1Þ

can be interpreted as the fraction of common variance
between the two. Here, we assume the examined fields to be
proxies for an unknown true field Xtrue and therefore
express each as a linear combination of Xtrue and an error
field h:

Xi ¼ aiXtrue þ hi; Xj ¼ ajXtrue þ hj: ðA2Þ

[56] Without loss of generality one can assume the error
fields to be uncorrelated to the true field:

cov Xtrue; hkð Þ ¼ 0; k ¼ i; j ðA3Þ

because if there is a correlation, one can always split up hk =
hk, k + hk,? into one part hk,k correlated to Xtrue with R = 1
and one part hk,? uncorrelated to Xtrue. In equation (A2),
hk,k can be drawn into the first part of the sum changing the
coefficient of the true field. For the remaining hk,?, equation
(A3) is valid. Using the definitions

eii :¼
varðhiÞ
varðXiÞ

; eij :¼
covðhi; hjÞ
covðXi;XjÞ

ðA4Þ

for the relative error variance eii and the relative error
covariance eij, inserting the linear combination (A2) into the
formula for the linear correlation coefficient (A1) and using
equation (A3) yields after some transformations

R2
ijð1� eijÞ2 ¼ ð1� eiiÞð1� ejjÞ: ðA5Þ

This equation connects the relative error variances and
covariances of the examined fields and their linear
correlation coefficients. As the correlation coefficients, the
error variances and covariances do not depend on a constant
factor or a constant offset of one of the fields; they don’t
refer to absolute values but only to the patterns of the fields.
If spatial correlations between two dimensional fields are
examined, the relative error variances eii will be also called
pattern errors.

Figure 6. Geographical localization of the outliers: colored: grid points identified as outliers for one or
two fields, white: outliers for none of the fields, light grey: grid points outside the analyzed area (mask).
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[57] For N fields, equation (A5) is a system of
N

2

� �
equations with

N

2

� �
+ N unknown variables, so in general,

the system is not solvable. Only if there is already external
information about some of the variables, for instance if one
can safely assume the errors of the examined fields to be
independent (eij = 0), one can solve the system for the rest
of the variables. If there are at least three fields with
independent errors, equation (A5) is solvable.

A2. Pattern Error and Mean Error at Each Grid Point

[58] A pattern error characterizes a field as a whole, while
an error field relates to the value of the corresponding field at
each grid point, often given as percentage. If the functional
dependency between errors and true values is known, the
pattern error can be calculated from the percentage errors. The
other direction is not possible since the fields in equation (A2)
are only defined up to a common factor which would change
the absolute error but not the pattern error.
[59] Errors of measurements often consist of a part h1 =

bXtruex1 proportional to the true value and a noisy part h2 =
cx2 according to the limit of detection, where x1 and x2 are
noisy variables uncorrelated to each other and the true field.
Stated are the values b = stddev(h1/Xtrue) and c = stddev(h2)
of the error model

X ¼ Xtrue þ h1 þ h2; ðA6Þ

h1 ¼ bXtruex1; h2 ¼ cx2; with

hxii ¼ 0; hxixji ¼ dij; hXtruexii ¼ 0; i; j ¼ 1; 2:

This error shall now approximatively be transformed into
the pattern error in equation (A4) resulting from the error
model in equation (A2), where no functional form of h was
assumed. For this, one additional assumption has to be
made: xi shall be normally distributed. This is only
approximatively true. With this assumption, uncorrelated
variables are also statistically independent, and the expected
value of a product of independent variables equals the
product of their expectation values. Using this, Xtrue and h1
must be uncorrelated,

hXtrueh1i ¼ bhX 2
truex1i ¼ bhX 2

trueihx1i ¼ 0;

so with this assumption, the coefficient a in the error model
in equation (A2) can be set to one, since there is no need to
compensate for a correlation between Xtrue and h and there
is no coefficient of Xtrue in equation (A6). The approxima-
tion for the pattern error resulting from the error model in
equation (A6) reads as

eX ;app ¼
var h1ð Þ þ var h2ð Þ

var Xð Þ ;

which can be transformed into

eX ;app ¼

b2

1þ b2
var Xð Þ þ �X 2 � c2
� �

þ c2

var Xð Þ ðA7Þ

using the error model of equation (A6), the definition of the
variance and the assumption of normally distributed errors.

A3. Construction of a Combination Field

[60] To construct an optimized combination field, first a
transformation has to be carried out to get fields with
independent errors. For these fields, weighting factors can
be calculated to minimize the relative error variance of the
combination field. These weighting factors can than be
transformed back.

A3.1. Fields With Independent Errors

[61] If equation (A5) is solvable, the relative error var-
iances and covariances of the involved fields can be
calculated from the correlation coefficients. They can be
used to combine the fields to obtain a new field with
minimized relative error covariance. To avoid counting
common errors twice in the combination, a transformation
is applied to get fields with uncorrelated errors. This is done
by diagonalizing the error covariance matrix E, which
contains the absolute error variances and covariances
(Eii = eii � var(Xi), Eij = eij � cov(Xi, Xj)). Since E is
positive definite and symmetric, its eigenvalues li are pos-
itive and real and the normalized eigenvectors~vi can be used
as a transformation matrix P = ~v1j~v2jj~vNð Þ. This transforma-
tion yields the diagonalized error covariance matrix D and
fields with uncorrelated errors Yi ((X1, X2, . . . XN)

: = ~X )

D ¼ P>EP and ~Y ¼ ~P
>~X

This procedure is a primary component analysis [Storch and
Zwiers, 1999] for the error fields.

A3.2. Weighting Factors

[62] The transformed fields Yi are linear combinations of
the original fields Xi, and as these they can be presented as
linear combination of a true field Xtrue and an error field xi.
Since this analysis is independent of constant offsets or
factors, Xtrue and xi can be standardized: Xtrue

std , the variances
are accounted for by the coefficients ai and bi:

Yi ¼ aiX
std
true þ bixi with

cov X std
true; xi

� �
¼ 0; cov xi; xj

� �
¼ dij:

As for the untransformed error fields hi in equation (A3),
the covariance between the xi and the true field can be set to
zero without loss of generality. After the transformation,
also the covariances between different error fields are zero.
The coefficients are obtained from the eigenvalues of the
error covariance matrix: bi = ±

ffiffiffiffi
li

p
and ai = ±ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var Yið Þ � li

p
. The sign of ai must be chosen so that the

true field is contained with the same sign in all fields Yi (all
correlations between the Yi must be positive), the sign of the
coefficient bi of the error field is arbitrary.
[63] The transformed fields Yi can be combined

Yc ¼
PN
i¼1

ciYi ¼ acX
std
true þ xc;

ac ¼
PN
i¼1

ciai; xc ¼
PN
i¼1

cibixi;
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with coefficients ci minimizing the relative error variance of
the combined field:

ec c1; � � � ; cNð Þ ¼ var hcð Þ
var Ycð Þ

¼
PN

i¼1 c
2
i b

2
iPN

i¼1 ciai

� �2

þ
PN

i¼1 c
2
i b

2
i

¼ min : ðA8Þ

The minimum is found for

ci /
ai

b2i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Yið Þ � li

p
li

;

so the weighting factors are proportional to the standard
deviation of the fraction of the true field contained in the
fields and inversely proportional to the variance of the error
field contained in the fields. The factors become unique by
the constraint Si = 1

N ci = 1. To obtain the weighting factors
wi for the original fields Xi, the ci are transformed back:

~w ¼ P~c : ðA9Þ

A4. Outliers

[64] Outliers of a field Xi are defined in this analysis as
data points that contribute strongly to the error variance
of that field. To identify them, the contribution of each
grid point to the pattern errors of the analyzed fields is
calculated.

A4.1. Influence of Single Grid Points on the
Pattern Errors

[65] We calculated the error variance of each field once
using all data points and once omitting each single data
point in turn. This procedure is known as the jackknife
[Efron, 1982]. Since the omission of one data point simul-
taneously changes the error variance and the variance of the
field, to separate the two effects the changes are calculated
for the absolute error variances Eii = eii � var(Xi). For easier
comparison between the fields, the changes are normalized
with the total error variance. For each field Xi at every data
point l the quantity

Delii :¼
E

lð Þ
ii � Eii

Eii

ðA10Þ

is determined. The notation y(l) represents the quantity y
omitting data point l. For the jackknife fields Deii

l , data
points are identified as outliers if the standardized deviation
from the mean exceeds some test quantity TM, a

Deii � Delii
stddevðDeiiÞ

> TM ;a ; ðA11Þ

where M is the total number of data points and a is the
desired level of significance. This is a one-sided test for data
points that enlarge the pattern error.

A4.2. Identification of Outliers

[66] The significance level used to identify outliers in the
fields Deii

l (equation (A10)) was a = 0.005. The test quantity
TM, a for the outlier test in equation (A11) was determined
by Monte Carlo Simulation: The frequency distribution of
the Deii

l is roughly a lognormal distribution. We chose the
parameters for a lognormally distributed stochastic variable
so that its frequency distribution closely resembled that of
the Deii

l . Then we determined TM, a so that for N = 10000
realizations of that stochastic variable with a samplesize of
M = 1463 containing no outliers, an average of 0.5%
outliers was identified.
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