Hourly surface nitrogen dioxide retrieval from GEMS tropospheric vertical column densities:

benefit of using time-contiguous input features for machine learning models
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surface NO, concentrations with a random forest model.
Linear regression: - Including time contiguous measurements from earlier times in the training and prediction
not shown, see publication for results always improved predictions relative to surface in-situ measurements.
- Performance gains are also observed when considering the lower number of time
Random forest: contiguous data points available.
Python scikit-learn software package - In practical applications, for each point, the maximum available time contiguity should be
max features =2, 3, 3, 3, 4 for time contiguity k=1, 2, 3,4, 5 appliedup tok=4.Larger k does notresultin furtherimprovements.
min samples leaf and max samples =5 using 100% of the size of the training data - Excluding satellite NO, observations from the feature list worsened the predictions but was
n estimators = 8000 trees (not needed but used to improve stability) still in an acceptable range. However, it is expected that the model without satellite data
All remaining hyperparameters are always set to the default values does not perform as well outside of South Korea. | |
- Application to other geostationary instruments, such as TEMPO and Sentinel-4, will be
interesting.
Acknowledgements
+ We thank the National Institute of Environmental Research (NIER) of South Korea for Selected references
providing GEMS |lv1 data and financial support (NIER-2022-04-02-037) ) | |
. in situ measurements of surface NO, were provided by the Korean Ministry of Environment Go(;i_ek_eci J., '?'_Chtelr]; A, 'é‘gﬁ/les’ }t< Maaﬁ’ P, Hor?_g, |H" I'-ee’ ZI a'_‘t‘_j Pgtr)k, J-];_tH‘}“”Y S“?ace ”'tr:_’ge”
. This project has been funded by the Deutsches Zentrum fir Luft- und Raumfahrt (grant no. cloxide retrieval from %5 rOpOSphETIC vertical colimn densilies. DENSHL OF LSIng time-contiguous
50 EE 2204 iInput features for machine learning models, Atmos. Meas. Tech., 18, 3747-3779,
) https://doi.org/10.5194/amt-18-3747-2025, 2025.

Lange, K., Richter, A., B6sch, T., Zilker, B., Latsch, M., Behrens, L. K., Okafor, C. M., Bdsch, H.,
Burrows, J. P., Merlaud, A., Pinardi, G., Fayt, C., Friedrich, M. M., Dimitropoulou, E., Van
Roozendael, M., Ziegler, S., Ripperger-Lukosiunaite, S., Kuhn, L., Lauster, B., Wagner, T., Hong, H.,

U * 't Kim, D., Chang, L.-S., Bae, K., Song, C.-K., Park, J.-U., and Lee, H.: Validation of GEMS

n |Ve I’S | y tropospheric NO2 columns and their diurnal variation with ground-based DOAS measurements,

O f B re m e n Atmos. Meas. Tech., 17, 6315—6344, https://doi.org/10.5194/amt-17-6315-2024, 2024.

see also: www.doas-bremen.de




